tanx的导数,tanx的导数有几个?
tanx的导数,tanx的导数有几个?
tanx的导数有几个
tanx求导的结果是sec²x.
可把tanx化为sinx/cosx进行推导
(tanx)'
=(sinx/cosx)'
=[(sinx)'cosx-sinx(cosx)']/cos²x
=(cos²x+sin²x)/cos²x
=1/cos²x=sec²x
1.C'=0(C为常数);
2.(Xn)'=nX(n-1) (n∈R);
3.(sinX)'=cosX;
4.(cosX)'=-sinX;
5.(aX)'=aXIna (ln为自然对数);
6.(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1);
7.(tanX)'=1/(cosX)2=(secX)2
8.(cotX)'=-1/(sinX)2=-(cscX)2
9.(secX)'=tanX secX;
10.(cscX)'=-cotX cscX;
tanx的各阶导数
tanx的一阶导数是(secx)^2或1/(cosx)^2,计算tanx的导数时,可以将tanx化为sinx/cosx进行推导,其计算过程为:[sinx/cosx]'=[(sinx)'cosx-sinx(cosx)']/(cosx)^2=(secx)^2。
二阶导数是2sinx/(cosx)^3,
三阶导数是2(1+2(sinx)^2)/(cosx)^4,
四阶倒数是24(secx)
导数是函数的局部性质,又名微商,当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
tanx的导数,tanx的导数推导
导数推导:(tanx)’=1/cos²x=sec²x=1+tan²x。
导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。
早期导数概念—-特殊的形式。大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。
tanx的导数用什么表示
求导,即当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限;在一个函数存在导数时,称这个函数可导或者可微分。tanx求导的结果是sec²x,可把tanx化为sinx/cosx进行推导。(tanx)'=1/cos²x=sec²x=1+tan²x。所以tanx的导数是:(secx)^2。
解答过程如下,用商法则:
(f/g)'=(f'g-g'f)/g^2
[sinx/cosx]'=[(sinx)'cosx-sinx(cosx)']/(cosx)^2
=[cosx*cosx+sinx*sinx]/(cosx)^2
=1/(cosx)^2
=(secx)^2
扩展资料:
商的导数公式:
(u/v)'=[u*v^(-1)]'
=u' * [v^(-1)] +[v^(-1)]' * u
= u' * [v^(-1)] + (-1)v^(-2)*v' * u
=u'/v – u*v'/(v^2)
通分,易得
(u/v)=(u'v-uv')/v²
导数的求导法则:
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
常用导数公式:
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna,y=e^x y'=e^x
4.y=logax y'=logae/x,y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=cotx y'=-1/sin^2x
-
- lol是什么意思,lol是什么意思
-
2023-09-06 19:11:33
-
- 98vf是什么意思,电动螺丝刀98vf是什么意思?
-
2023-09-06 19:09:27
-
- 知了怎么放冰箱保存,蝉花保存方法
-
2023-09-06 19:07:22
-
- 老鼠会不会爬墙,老鼠会爬墙吗
-
2023-09-06 07:46:44
-
- 劳动法新规定,2022年新劳动法产检假规定
-
2023-09-06 07:44:39
-
- 拉尼娜现象是什么意思,天气拉尼娜是什么意思
-
2023-09-06 07:42:34
-
- 海棠花的养殖方法,丽格海棠花的养殖方法和注意事项 盆栽
-
2023-09-06 07:40:29
-
- 点蚊香应该放在屋里什么位置,点燃的蚊香应该放在哪里a窗户b桌子c地板砖上
-
2023-09-06 07:38:24
-
- 春节鞭炮简笔画,儿童放鞭炮简笔画?
-
2023-09-06 07:36:19
-
- 辰时是什么时间,辰时至未时是几点到几点
-
2023-09-06 07:34:15
-
- 做起泡胶的简单方法,做起泡胶的方法最简单?
-
2023-09-06 07:32:10
-
- 中国空间站有多大,中国空间站有多大面积
-
2023-09-06 07:30:05
-
- 职高是什么,专职高职是什么意思?
-
2023-09-06 07:28:00
-
- 灰色衣服发黄怎么洗干净,灰色衣服发黄怎么洗?
-
2023-09-06 03:11:41
-
- 豆腐买回来要用水泡,吃火锅的时候喝什么饮料刮油
-
2023-09-06 03:09:35
-
- 吃榴莲之后多久吃海鲜,吃榴莲多久可以吃海鲜
-
2023-09-06 03:07:29
-
- 荸荠能生吃吗,荸荠可以生吃
-
2023-09-06 03:05:24
-
- 5克石斛有几粒,石斛泡水喝的功效用量
-
2023-09-06 03:03:18
-
- 蜘蛛会咬人,蜘蛛这种动物会咬人吗
-
2023-09-06 03:01:13
-
- 易地保护和就地保护的区别,保护动物多样性的根本措施是保护
-
2023-09-06 02:59:07